
AN APPROACH FOR ASSESSING SOFTWARE PROTOTYPES

V.E. Church, D.N. Card, W.W. Agresti, and Q.L. Jordan*

ABSTRACT

A procedure for evaluating a software prototype is pre-
sented. The need to assess the prototype itself arises from
the use of prototyping to demonstrate the feasibility of a
design or development strategy. The assessment procedure
can also be of use in deciding whether to evolve a prototype
into a complete system. The procedure consists of identi-
fying evaluation criteria, defining alternative design ap-
proaches, and ranking the alternatives according to the
criteria.

INTRODUCTION

A software prototype is a functionally incomplete model of a
proposed system, built to demonstrate feasibility or explore '

potential requirements. Most of the interest in prototypes
has focused on their development and their role in the soft-
ware life-cycle. This article addresses prototype assess-
ment--a topic that is less fully developed. Proptotyping
has been used most frequently to gain an understanding of
user requirements [Gomaa, Scott 811. When prototyping is
employed for this purpose, its benefits can be compared to
those of other activities, such as specifying, as a way of
proceeding in the early phases of a software development
project. Several articles discuss the advantages and dis-
advantages of the prototyping activity (e.g., [Alavi 841 or
[Boehm et al. 84)). In this article, we consider the eval-
uation and assessment, not of prototyping, but of the proto-
type itself. When the software prototype is the object
being evaluated, two questions are of interest:

0 Is the design concept feasible?

0 Is the prototype software an adequate basis for
further development?

*The authors are with Computer Sciences Corporation, System
Sciences Division, 8728 Colesville Road, Silver Spring,
Maryland 20910 .

1
2-13

Prototyping requires the expenditure of organizational re-
sources, and the resulting prototype, although not a com-
plete system, does have some functionality. Organizations
are not always inclined to throw the prototype away: one
person's prototype is another person's system. Several ar-
ticles recommend that organizations consider evolving the
prototype into a completed system (e.g., [Duncan 821 or
[Blum 831). Making that decision is significantly different
from deciding on the merits of prototyping because it re-
quires evaluating the prototype itself: is it worth the in-
vestment of more resources?

When a prototype is being used to evaluate the feasibility
of a particular design or development strategy, the proto-
type itself also needs to be evaluated (see [Giddings 843
for a discussion of uncertainty in software design). The
prototype represents one possible approach to solving a
problem. Evaluating the prototype requires the considera-
tion of how well alternative designs or development strate-
gies would have addressed the problem.
explain one procedure for assessing software prototypes and
show how it was applied in evaluating an actual prototype.

This article will

ASSESSMENT PROCEDURE

The procedure for assessing a prototype includes three steps:

1. Defining the assessment criteria

2. Identifying the design alternatives

3. Evaluating the alternatives

Defining the Assessment Criteria

The first step is to review the problem statement and ex-
tract a relatively small number of high-level requirements
to serve as criteria for assessment. We found that, based
on the amount of effort required to treat each class prop-
erly, the number of criteria should be on the order of 10.
Five is probably a lower limit, and twenty is too many to
assess in the timeframe implied by a development project.

The assessment criteria represent the users' view of the
problem. Each criterion should include a brief statement of
requirement (one or two sentences), a short narrative ex-
planation (written in the users' terminology), and an iden-
tifying phrase for use in tables and matrices. The intended
audience of the assessment is the user--the requirements
formalisms that are intended to support software developers
are out of place here.

2

2-14

2-15

Identifyinq the Design Alternatives

The prototype represents only one possible solution to the
problem. The assessment procedure requires that alterna-
tives be identified as well, so that the prototype can be
assessed in the context of other approaches.
step, then, is to identify approaches to the problem that
might provide alternative solutions. The alternative solu-
tions should be based on approaches that are reasonably well
understood. It is helpful if an alternative approach can be
linked to specific implementations that are concrete in-
stances of the approach.

The second

The alternative solutions should be as different as possible
given the constraints of the problem domain. Examples are
the use of

e Data base management systems instead of dedicated
software

0 Fourth-generation instead of procedural languages

e Interactive instead of batch pr.ocessing

0 Distributed instead of centralized processing

The review of such disparate alternatives will certainly
increase the confidence level of the assessment and is
likely as well to provide useful insights to the eventual
development process. The prototype provides a sort of
"depth-first" perspective; the examination of alternatives
provides the complementary "breadth-first" review.

As with the assessment criteria, the audience for the de-
scriptions of the alternatives is the user. The alterna-
tives should be couched in the users' terminology and
presented in narrative form (perhaps a page or two of de-
scription per alternative). The number of alternatives will
probably be quite small; given the interest in diversity,
three to six alternatives will probably exhaust the spectrum
of possibilities. Variations on a theme (say, different
languages with central versus distributed processing) may
increase this to the 5-to-20 range noted above.

Evaluating the Alternatives

Once the sets of criteria and alternatives have been estab-
lished, the work of judging relative merit can begin. The
approach we found most effective was offline individual re-
view leading up to group discussions at which a consensus

3

The assessment step consists of ranking the alternatives in
order of the degree to which they satisfy each criterion.
The essence of the procedure is comparative evaluation of
alternatives within each criterion--none of the assessment
is performed in a vacuum. Because the prototype is avail-
able for inspection and the alternatives are well under-
stood, consensus is easily achieved.

The basis for assigning scores, of course, is the relative
value provided to the user--how well is the underlying cri-
terion addressed by each approach? The outcome thereby rep-
resents an evaluation of different design concepts tailored
very specifically to the problem domain of study. The re-
sult of the assessment is a profile of how wellathe proto-
type compares with less experimental approaches in the areas
of greatest concern. This information provides the basis
for decisions on developing the full system.

CASE STUDY--FLIGHT DYNAMICS ANALYSIS SYSTEM

The Flight Dynamics Analysis System (FDAS) is a user-oriented
research tool, still under development, that is intended to
support spacecraft mission analysts. FDAS will provide com-
putational assistance in planning mission profiles, examin-
ing various computational strategies, and performing related
flight dynamics ground support activities. It will largely
replace a collection of single-use tools and old, much-
modified mission analysis programs. Its primary goal (as a
new development) is to provide a degree of separation be-
tween the analysts (who are generally not particularly avid
programmers) and the rather complex support software they
require. FDAS is to provide a new, user-friendly approach
to performing an existing arduous and error-prone task.

The functional requirements for FDAS were extracted from the
existing environment. The prototyped design strategy, how-
ever, employed an innovative "software builder" approach not
previously attempted for this problem. The planned system
would maintain a library of linkable components and provide
for their modification and use [Bassett, Giblon 831. FDAS
would provide an integrated system of functions and controls
to simplify the programming requirements for the analysts
who would use the system.

4

2-16

evaluation was formed. We found that it was essential to
have several different views; no single outlook or experi-
ence base could have provided the completeness of evaluation
that we sought.

1
I
1
D
1
I

1
8
8
8

The prototyping effort was commissioned by the NASA Goddard
Space Flight Center to provide a proof-of-concept demonstra-
tion of FDAS and to investigate some possible alternatives
in the user-interface area [Sukri, Zelkowitz 831. The pro-
totype assessment effort described here was part of a larger
evaluation effort that included examination of comparable
efforts elsewhere and actual use of the prototype by space-
craft analysts. This report focuses only on the assessment
of the proposed FDAS design (based on the prototype) per-
formed by members of the Software Engineering Laboratory
[Card et al. 821.

Step 1. Defining FDAS Assessment Criteria

From the original requirements definition materials and from
discussions with eventual users of the system, we developed
a set of seven criteria for assessing the concept and design
plan for FDAS. These criteria (Table 1) reflect our under-
standing of the problem to be solved given the constraints
of the environment. It was recognized that the new system
had to be useful to the existing analysis staff, had to
function on existing computer facilities, and had to be

. maintained by existing operations personnel. Given that, we
identified the criteria described briefly below.

0 Minimize requirement for global knowledge of the
application software--The user should be able to focus on
the particular area of concern (e.g., a particular orbit
propagator or integration routine) without having to compre-
hend all of the housekeeping’details of the programming sys-
tem (data transfer, for example, or assignment of FORTRAN
COMMONS).

0 Minimize requirement for new system-level knowl-
edge--The existing system required user familiarity with
editors, compilers, linkers, and the execute modes of two
different computers and operating systems. The new system
should attempt to reduce the current load of system aware-
ness and to minimize the need for additional system-level
knowledge.

0 Maximize application-level flexibility and accessi-
bility--The existing software buried functional routines
deep within dedicated systems or combined them inextricably
into small once-only tools. FDAS should provide accessi-
bility to source code through functionally organized cate-
gories. FDAS should further support low-level modification
and test of such routines (for example, numeric precision,
or type of integration step size determination).

5

2-17

Table 1 . Ranking of A l t e s n a t i v e s Against Criteria for
FDAS Case Study -

ALTERNATIVES

REDEVELOP EXISTING SOFIWARE
0 FORTRAN
0 OTHER EXISTING LANGUAGE
0 SPECIAL-PURPOSE LANGUAGE

BUILD COMPREHENSIVE DATA-DRIVEN
PROGRAM

0 FORTRAN

0 OTHER EXISTING LANGUAGE
0 SPECIAL-PURPOSE LANGUAGE

USE SOFTWARE BUILDER (PROTOTYPE)
0 FORTRAN
0 OTHER EXISTING LANGUAGE

SPECIAL-PURPOSE LANGUAGE

9 1

8 6
7 5

2 3
2 3
2 3

6 7
5 9
4 8

al = BEST ALTERNATIVE TO SATISFY CRITERION.

2 = WORST ALTERNATIVE TO SATISFY CRITERION.

NOTE: AVERAGE SCORE AWARDED IN CASE OF TIES.

6
2-18

-

> c
d m z
-I
LL -

2.5
2.5
5.5

8
8
8

2.5
2.5
5.5 -

CRITERIA -
z
t-
9
d
0

B
L

t- z
2 w

2 -
8
8
8

2
2
2

5
5
5

1 36.5
4 41.5
7 43.5

2 28.0
5 30.0
8 32.0

3 32.5
6 34.5
9 36.5

0 Minimize effort for application-level modifica-
tions--The analytical function of FDAS requires frequent
changes to data and software. The effort required for these
changes should be minimized.

0 Minimize effort for system-level modifications--It
is assumed that a maintenance group would be responsible for
the addition of new capabilities (a new model of the magne-
tosphere, for example); the analyst-users would not perform
system-level changes. The requirement is that such major
changes, providing new system-level functionality, be per-
formed with minimal effort by the support group.

0 Provide support for integration of data, software,
and analysis--The existing mode of operation involves modi-
fication of the software followed by a number of tests and
trials using different data and conditions. FDAS should
support the data management function of repeating tests,
logging runs, and analyzing or comparing output.

0 Minimize implementation difficulty--Different ap-
proaches present different levels of technical difficulty
and probable cost or risk. These aspects should be mini-
mized.

Step 2. Identifying FDAS Design Alternatives

The assessment group defined two alternative approaches (in
addition to the prototype) to providing the functionality
required of FDAS. Three different programming language op-
tions were also investigated as being applicable to the
problem domain.

The first alternative was to redevelop existing software.
The essence of this approach is to repackage existing func-
tionality within an improved user interface structure. No
executive or data-processing functions would be provided
except as already available (graphs and plots, for example,
are provided in the existing system). The users would con-
tinue to rely on the various operating systems and utilities
for support .
The second alternative was to build a comprehensive data-
driven program, a multifunction system with behavior con-
trolled by user input (similar to various simulation
packages, e.g., [Forman 761) . The program would provide
both high- and low-level opportunities to control process-
ing. This approach would (conceivably) completely divorce
the user from any programming language by providing a higher
order of functionality. It also would open the possibility

7

2-19

of using knowledge-based methods for extension and control
of activities .
The third alternative (that embodied by the prototype) was
to use a software builder approach. The system would main-
tain an organized library of functions and procedures and
would support linking these elements in diverse and unfore-
seen combinations. The system would support modification of
stored routines (including compilation and linkage) and
their execution by way of stored command sequences.
approach is similar to some programmer's workbench concepts;
it integrates the normally distinct functions of edit/
compile/execute/analyze tools into a harmonious whole
[Dolotta, Mashey 821 .
Three language options were also investigated by the assess-
ment group: FORTRAN, another existing language, or a
special-purpose language. FORTRAN is treated separately
because it is the language of most existing software and was
used in developing the prototype. The cultural bias toward
FORTRAN is very strong in the NASA Goddard environment,
especially among analysts (whose backgrounds include more
engineering, physics, and astronomy than computer science).
Any other existing language (for example, Pascal, Ada,
HAL/S) would require substantial redevelopment of existing
software; it would have to provide a significant added value
to be seriously considered. A special-purpose language
could be designed and developed specifically for flight dy-
namics problems and computations. The FDAS prototype, in
fact, included an extension to FORTRAN to support data ab-
stractions and modularization (e.g., as in [Isner 8 2 1) .
Such a language could be much closer to the natural algo-
rithmic methods that are peculiar to spacecraft flight dy-
namics, but would require both development and user training.

Combining the seven assessment criteria with the nine alter-
native approaches (three designs and three language options)
produces the evaluation matrix shown in Table 1.

This

Step 3. Evaluating FDAS Alternatives

The evaluators considered each criterion in Table 1 by rank-
ing how well each alternative addressed that criterion. The
complete assessment involved considerably more discussion
than is presented here [Card et al. 8 4 1 . To illustrate this
evaluation step, the discussion and rationale for two of the
distinquishing criteria are presented here. The results of
the assessment are shown in Table 1.

8

2-20

0 Knowledge of Application--It-was clear that rede-
veloped software might be easier to use than the existing
collection of tools, but the difficulty of modifying the
software would still be high. All of the normal difficulty
of preventing side-effects and validating interfaces would
still plague the analyst-users. We assessed FORTRAN to be
the worst offender in this area and assumed that some other
language (Pascal was our model) would provide somewhat ti-
dier modularization. Any new language would have as a de-
sign goal the minimization of such problems; we scored it
higher accordingly.

A comprehensive data-driven program would not permit the
user to have access to code at a level of COMMONS and in-
terfaces and so scored very high on this criterion. The
development language for the data-driven system would be
transparent to the user, thus the different language options
provided no discrimination in analyst-user terms.

The software builder approach specifically attempts to hide
implementation details from the user by supporting inter-
faces, data collection, system building, and execution with
its own constructs. This approach was thus rated better
than the redevelopment approach but less desirable than the
data-driven program approach. The arguments for each lan-
guage option, as discussed for software redevelopment, are
applicable here; the rating is shown in Table 1.

0 Ease of system-level extension--A different pattern
appeared with this criterion. The predominant sequence of
language options--FORTRAN last, other language (e.g.8
Pascal) better, special language best--holds for each of the
design approaches, but the relative rankings of those alter-
natives is different. The software builder approach was
judged most accessible to system-level changes and exten-
sions of functionality, partly because the system itself
provides some of the tools and means for its extension. The
software builder would provide a structure more amenable to
change in the directions expected for flight dynamics than
is the case with existing software. The redevelopment ef-
fort (as we envisioned it) would not provide such an inte-
grated structure. The comprehensive data-driven program
approach, because of its monolithic nature (as seen from the
outside) would prove most difficult to extend. It should be
noted that, in this instance, the language option did affect
the ratings in the data-driven approach. The implementation
language would have an effect on the ease of programming, as
the ratings reflect.

9

2-21

For convenience, we provided a total column in Table 1 to
summarize the evaluation across all of the evaluation crite-
ria. In practice, such a total is an oversimplification of
the analysis. The final assessment comes from assigning
relative weights to each of the criteria and producing a
weighted sum. This weighting enables the users' priorities
to be reflected in the analysis results.

FDAS Assessment Summary

O n the basis of the evaluation, the assessment team found
that the prototype had served its purpose in establishing
the feasibility of the overall FDAS goal and of the software
builder approach in particular. However, the comparative
advantages were not large, and not all elements of the pro-
totype were favorably assessed. Drawing on the discussions
of competing strategies, the assessment team also suggested
some changes to the design approach.

Partly as a result of this analysis, the project underwent
an extended operational specification process, leading to a
substantially revised design approach along with a greater
understanding of how the system would be used. The project
is now well into development.

SUMMARY OF THE ASSESSMENT PROCEDURE

Two aspects of the prototype assessment experience should be
highlighted: the importance of identifying alternative so-
lutions and the sensitivity of the analysis to the weighting
of individual criteria. Evaluating an object in isolation
is always difficult, whereas contrasting alternatives is
usually easy. By identifying alternative solutions (includ-
ing the prototyped alternative) to the problem, the evalua-
tors' task is considerably simplified. We found that
reaching a consensus evaluation of the prototype was facili-
tated by the context provided in Table 1. Furthermore, the
consideration of alternatives led to recommendations for
improving the design approach.

The assessment procedure described here provides a much
richer analysis than a simple good/bad evaluation. Not only
can the prototype be evaluated in the context of alternative
approaches, but the comparative value of different features
can also be defined. This procedure approximates competi-
tive development ("flyoffs") more closely than does an ac-
ceptance test evaluation, without requiring actual parallel
development. This assessment involved a team of evaluators
(part-time) over a period of months. The time period coin-
cided with the prototype effort (so no schedule delays were

10

2-22

imposed), but the assessment team was completely separate
from, and in addition to, the development team.

As noted above, the assessment procedure supports cost/
benefit analysis at a more detailed level than would other-
wise'be possible. This emphasizes the sensitivity of the
procedure to choices of weighting factors for different cri-
teria. Sensitivity analysis can be useful in identifying
influential criteria and relatively stable alternatives.

The FDAS experience indicates that this procedure is an ef-
fective mechanism for evaluating the feasibility of a proto-
typed design. It provides an organizing framework for
expressing and employing knowledge gained from previous
software development experience.

REFERENCES

Alavi, M., "An Assessment of the Prototyping Approach to
Information Systems Development," Communications of the ACM,
vol. 27, no. 6, June 1984, pp. 556-563

Bassett, P., and J. Giblon, "Computer Aided Programming,"
Proceedinqs, SOFTFAIR. New York: Computer Society Press, 1983

Blum, B. I., "Still More About Rapid Prototyping," ACM
SIGSOFT Software Engineering Notes, vol. 8, no. 3, July
1983, pp. 9-11

Boehm, B. W., T. E. Gray, and T. Seewaldt, "Prototyping
Versus Specifying: A Multiproject Experiment," IEEE Trans.
Software Engineering, vol. SE-10, no. 3, May 1984,
pp. 290-303

Card, D., et al., The Software Engineering Laboratory,
SEL-81-104, NASA/Goddard Space Flight Center, February 1982

Card, D., et al., "A Software Engineering View of the Flight
Dynamics Analysis System (FDAS): Parts I and 11," Computer
Sciences Corporation Technical Memorandum, March 1984

Dolotta, T. A., and J. R. Mashey, "An Introduction to the
Programmer's Workbench," Proceedinqs, Second International
Conference on Software Engineering. New York: Computer Soci-
ety Press, 1982

Duncan, A. G., "Prototyping in Ada: A Case Study," ACM
SIGSOFT Software Engineering Notes, vol. 7, no. 5, December
1982, pp. 54-60

11

2-23

Forman, L., "The New York Times Corporate Planning Model,"
Proceedings of the Winter Simulation Conference. New York:
Association for Computing Machinery, 1976

Giddings, R. V., "Accommodating Uncertainty in Software De-
sign," Communications of the ACM, May 1984, pp. 428-434

Gomaa, H., and D. B. H. Scott, "Prototyping as a Tool in the
Specification of User Requirements," Proceedings, Fifth In-
ternational Conference on Software Engineerinq. New York:
Computer Society Press, 1981, pp. 333-342

Isner. J. F., "A FORTRAN Proqramming Methodology Based on
Data Abstraction," Communications of the ACM, vol . 25,
no. 10, October 1982, pp. 686-697

Sukri, J-, and M. V. Zelkowitz, "Characteristics of Rapid
Prototyping Experiment," Proceedings of the Eighth Annual
Software Engineering Workshop. NASA Goddard Space Flight
Center, November 1983

12

2-24

